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9. Appendix

BasedAI introduces Cerberus Squeezing as a method to enhance the practicality and
performance of Fully Homomorphic Encryption (FHE) applications. This approach opti-
mizes the e�ciency and speed of neural network operations on encrypted data by focusing
on computational resource allocation within multi-head attention mechanisms. Further-
more, BasedAI's research into "Encrypted Data Synthesis" and "Quantization-Aware
Training" aims to address challenges such as limited data accessibility and the need for
models to adapt to quantization e�ects, thereby expanding secure training resources and
improving protocol performance.

9.1 Cerberus Squeezing

"Cerberus Squeezing" is a technique aimed at optimizing multi-head attention mecha-
nisms in neural network models, particularly for processing encrypted data under FHE.
This involves selectively focusing computational resources on the most impactful atten-
tion heads to enhance e�ciency and performance.

Multi-Head Attention Mechanism The multi-head attention mechanism in a neural
network model can be represented as a function A that operates on an input sequence X
to produce an output sequence Y , where each head h focuses on di�erent parts of X:

Y = A(X) = Concat(head1, head2, . . . , headk)WO

, with each head computed as:

headi = Attention(XWQ
i , XWK

i , XW V
i )

, where WQ
i , WK

i , and W V
i are weight matrices for the i-th head's query, key, and value,

respectively, and WO is the output weight matrix.

Selective Optimization Cerberus Squeezing identi�es and prioritizes heads that con-
tribute most signi�cantly to the model's performance. If S(h) represents the signi�cance
score of head h, computational resources are focused on heads with S(h) > θ, where θ is
a threshold determining head signi�cance.
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Resource Allocation This optimization can be formalized as a constrained optimiza-
tion problem, aiming to maximize model performance under computational resource con-
straints:

max
WQ

i ,WK
i ,WV

i

Performance(Model),

subject to
C(WQ

i ,WK
i ,W V

i ) < Cmax

, where C(·) measures the computational cost, and Cmax represents the maximum allow-
able computational budget.

9.2 Further Research

9.2.1 Encrypted Data Synthesis "Encrypted Data Synthesis" refers to the process
of generating synthetic data points from existing encrypted datasets without decrypt-
ing them. If applied to BasedAI, this technique would leverage the inherent patterns
and structures within a given set of data, preserved under encryption, to fabricate new,
realistic data points that can enhance BasedAI model training.

Encrypted Data Representation Consider an encrypted data point represented as
E(xi), where xi is the original data point, and E(·) denotes the encryption function. The
dataset of encrypted points is denoted as Denc = {E(x1), E(x2), . . . , E(xn)}.

Pattern Extraction Assuming a function Fpattern that operates on encrypted data to
identify patterns without decryption:

Fpattern(Denc) → Penc

, where Penc represents the pattern information extracted from Denc, still in encrypted
form.

Data Fabrication The fabrication of new data points, E(xnew), uses the pattern in-
formation Penc to guide the generation process through a generative model G:

E(xnew) = G(Penc)

, where G is designed to work within the FHE scheme, ensuring that the output is a
realistically fabricated data point, still encrypted.

9.2.2 Quantization-Aware Training Applying further research into Quantization-
Aware Training (QAT) would allow BasedAI to optimize its neural network models for
e�cient deployment in environments where computational resources are limited, such
as devices performing encrypted data computations. This technique adjusts models to
operate e�ectively with lower precision arithmetic, which is critical for maintaining per-
formance under the constraints of Fully Homomorphic Encryption (FHE).

Model Quantization Quantization reduces the precision of the model's parameters
and activations, represented as moving from �oating-point representations F (xi) to lower
bit-width representations Q(xi). The quantized model's parameters and activations can
be denoted as Qparam and Qact, respectively.
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Quantization Function The quantization operation can be mathematically repre-
sented as:

Q(x) = round

(
x− µ

σ

)
· qscale + qzero

where x is the input, µ and σ are the mean and standard deviation of the input distri-
bution, qscale is the scaling factor for quantization, and qzero is the zero-point o�set.

Quantization-Aware Training Process During QAT, the model is trained or �ne-
tuned with simulated quantization e�ects. This involves integrating the quantization
function into the forward pass, allowing the model to adapt to the quantized representa-
tion before actual deployment:

FQAT(x) = Q−1(Q(x))

where FQAT represents the model's forward pass incorporating quantization and Q−1

denotes the dequantization operation to simulate the e�ect of quantization on the model's
performance.

Objective The objective of QAT is to minimize the discrepancy between the perfor-
mance of the quantized model and its full-precision counterpart, optimizing for a loss
function L that incorporates the quantization e�ects:

min
Qparam,Qact

L(FQAT(x), y)

where y is the true output. By training the model to anticipate and adjust to quantization,
QAT would ensure that BasedAI's neural networks remain e�cient and accurate when
deployed in resource-constrained FHE environments.
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